Technical Solution Sheet 5.01

5: Cold Water Plumbing

Cold Water Pipe Sizing, Testing and Commissioning

AIM
The aim of this technical solution is to clarify the requirements for sizing, testing and commissioning a cold water plumbing installation.

PLUMBING REGULATIONS 2008

The Plumbing Code of Australia (PCA) is adopted by and forms part of the Plumbing Regulations 2008. Part B1 of the PCA specifies the objectives and performance requirements related to the installation of cold water services. AS/NZS 3500.1: Plumbing and drainage Part 1: Wate services, is a "deemed to satisfy" docume + listed in Part B1 of the PCA and contai is sections on "Sizing of water seryiees" and "Testing and Commissioning".

CERTIFYING A COLD WATER PL M

 INSTALLATIONThere is an increasing vari ty ormaterials and products for the supply of cold (and neated) water. It is particularly important whe us ig unfamiliar products to ensure tha p pe Stang will be correct for adequate performar of the installation.

There are two ways that an installation may be certified as complying:

1. PCA - The purpose of this provision is to enable flexibility to achieve an installation outcome that may not strictly comply with AS/NZS 3500.1 but will produce an equivalent performing result.
2. AS/NZS 3500.1 - Generally, it is expected that plumbing work will be certified to AS/NZS 3500.1 In this case, your work must comply with

AS/NZS 3500.1 and would meet the PCA performance requirements. If you are certifying a water supply installation to AS/NZS 3500.1 it is important to understand how to size the system, and then select the correct pipe sizes for different pipe materials.
ris exare (see Figure 1) follows the method , singo typical installation in accordance with 3500 You will need to know the llowing:

- The Ind x length: The length in metres from the wat meter to the most disadvantaged oulet. In this case to the back hose tap in this ase 35 m .

The height in metres: The height in metres (above the water meter) of the highest outlet in this case 3 m .

- The pressure available at the outlets:

AS/NZS 3500.1 (Clause 3.3.2) requires a pressure of 50 kPa (5 m head) at the most disadvantaged outlet. In this case the back hose tap requires a minimum of 50 kPa pressure at a flow rate of $0.20 \mathrm{~L} / \mathrm{s}$ (flow rate from Table 3.1)

- The available pressure: If the water authority will specify a minimum pressure available, use that figure. Alternatively, you can check the available pressure at the meter and use 67% of the reading to simulate minimum pressure conditions. In this case pressure at the meter is measured at 720 kPa .

Technical Solution Sheet 5.01

- Flow rates and loading units.

AS/NZS 3500.1 Table 3.1 specifies flow rates and loading units of fixtures and appliances.

STEPS

1. Sketch the installation

The sketch should include the fixtures, their loading units and pipe sections identified by lettering as per example in Figure 2.

2. Determine Available Pressure

Measure static pressure at meter $=720 \mathrm{kPa}$ Allow 67% of 720 kPa to represent a minimum pressure $=482.4 \mathrm{kPa}$ or 48.24 m head

3. Determine Pressure Drop

The following formula is used to calculate the pressure drop along the index length.
P.D
$=\mathrm{H}_{\mathrm{m}}-\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{x}}$
Where $\mathrm{Hm} \quad=$ minimum available head in metres
= In this case 48m
$H_{s} \quad=$ height of the highest outlet = In this case 3m
$H_{x} \quad=$ minimum head reauii d at any outlet = In this case 5m
Therefore:
P.D
$=\mathrm{H}_{\mathrm{m}}-\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{x}}$
P.D.
$=48-3-5$ $=40 \mathrm{~m}$ head

5. Equivalent Pipe Sizes:

The nominal pipe sizes (DN) must then be checked against AS/NZS 3500.1 Table 1.1 to ensure correct sizes for material other than copper. Failure to do this may mean pressures flow rates and velocities will not comply with AS/NZS 3500.1

DN 20 is equivalent to:

- 25 Polyethylene (PE)
- 25 Crosslinked Polyethylene (PEX)
- 25 Polypropylene (PP-R)
- 22 Polybutylene (PB)

DN 18 is equivalent to:

- 20 PE
- 20 PEX
- 20 PP-R
- 20 PB

DN 15 is equivalent to:

- 16 PE
- 16 PEX
- 16 PP-R
- 18 PB

Also check that the internal bore of the chosen material is in accordance with AS/NZS 3500.1 Table 1.3. Different classes of plastic pipes have different wall thicknesses, therefore internal diame ers ry, reducing the bore of the pipe.
E.g. 20 nm cass 20 (PN 20) PEX has an internal ore of le s than the 15 mm specified in AS/NZS able 1.3. If in doubt ask the manufacturer to clarify the in rnal diameter of the pipe.

FIGURE 2 - EXAMPLE OF FIXTURE LOADING UNITS

Technical Solution Sheet 5.01

FIGURE 3 - LOADING UNIT TABLE

Pipe selection	Loading units	Probable sim flow	Normal pipe size (DN)
A-B	41	0.55	20
B-C	37	0.52	20
C-D	31	0.48	20
D-E	23	0.41	18
E-F	12	0.29	18
F-G	10	0.26	18
G-H	$*$	0.20	15
B-I	$*$	0.20	15
C-K	6	0.20	15
K-L	$*$	0.20	15
K-J	$*$	0.12	15
D-M	$*$	0.20	15
E-N	11	0.28	18
N-V	$*$	0.10	15
N-O	10	0.26	18
O-U	$*$	0.10	15
O-P	$*$	0.30	18
F-Q	$*$	0.10	5
G-R	6	0.20	15
R-S	$*$	0.30	15
R-T	$*$	0.12	15

Technical Solution Sheet 5.01

FIGURE 4 - TESTING PROCEDURE

